Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid.

نویسندگان

  • Ryan D Jones
  • Joyce J Repa
  • David W Russell
  • John M Dietschy
  • Stephen D Turley
چکیده

Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding.

Bile acids are synthesized via the classic pathway initiated by cholesterol 7alpha-hydroxylase (CYP7A1), and via alternate pathways, one of which is initiated by sterol 27-hydroxylase (CYP27). These studies used mice lacking cholesterol 7alpha-hydroxylase (Cyp7a1(-/-)) to establish whether the loss of the classic pathway affected cholesterol homeostasis differently in males and females, and to ...

متن کامل

Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid-fed farnesoid X receptor (FXR)-null mice: FXR-independent suppression of intestinal bile acid absorption.

Cholic acid (CA) feeding of farnesoid X receptor (Fxr)-null mice results in markedly elevated hepatic bile acid levels and liver injury. In contrast, Fxr-null mice fed cholesterol plus CA (CA+Chol) do not exhibit liver injury, and hepatic bile acid levels and bile acid pool size are reduced 51 and 40%, respectively, compared with CA-treated Fxr-null mice. These decreases were not observed in wi...

متن کامل

Dietary cholesterol stimulates CYP7A1 in rats because farnesoid X receptor is not activated.

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were ...

متن کامل

Alternate pathways of bile acid synthesis in the cholesterol 7 a -hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding

Bile acids are synthesized via the classic pathway initiated by cholesterol 7 a -hydroxylase (CYP7A1), and via alternate pathways, one of which is initiated by sterol 27hydroxylase (CYP27). These studies used mice lacking cholesterol 7 a -hydroxylase ( Cyp7a1 2 / 2 ) to establish whether the loss of the classic pathway affected cholesterol homeostasis differently in males and females, and to de...

متن کامل

Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine.

Bile acid concentrations are controlled by a feedback regulatory pathway whereby activation of the farnesoid X receptor (FXR) represses transcription of both the CYP7A1 gene, encoding the rate-limiting enzyme in the classic bile acid synthesis pathway, and the CYP8B1 gene, required for synthesis of cholic acid. The tissue-specific roles of FXR were examined using liver- and intestine-specific F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 303 2  شماره 

صفحات  -

تاریخ انتشار 2012